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Abstract

The purpose of this project is to investigate, implement, and evaluate algorithms that have high

potential for improving the robustness, fidelity and accuracy of three-dimensional Eulerian

hydrodynamic simulations.  Eulerian computations are necessary to simulate a number of

important physical phenomena ranging from the molding process for metal parts to nuclear

weapons’ safety issues to astrophysical  phenomena such as that associated with a Type II

supernovae.  A number of algorithmic issues were explored in the course of this research

including interface/volume tracking, surface physics integration, high resolution integration

techniques, multilevel iterative methods, multimaterial hydrodynamics and coupling radiation

with hydrodynamics.   This project combines core strengths of several Laboratory divisions.  The

project has high institutional benefit given the renewed emphasis on numerical simulations in

Science-Based Stockpile Stewardship and the Accelerated Strategic Computing Initiative and

LANL’s tactical goals related to high performance computing and simulation.

Background and Research Objectives

Eulerian hydrodynamic calculations are characterized by the fixed frame of the computational

mesh.   Lagrangian hydrodynamics where the mesh deforms at the material velocity have a long

history at this Laboratory and are well-suited to a number of research efforts.   The chief

difference between calculations performed in these two frames of reference (Lagrangian versus

Eulerian) is the smearing of material boundaries associated with the Eulerian calculations.   A

depiction of the differences in Eulerian and Lagrangian computational grids is given in Figure 1.

The specific physical phenomena that Eulerian computations can simulate vorticity which is

associated with large scale mixing.   Vorticity when associated with the Lagrangian frame of

reference will cause the computational mesh to tangle destroying the underlying calculation.  The

ability of Eulerian computations to provide the fidelity necessary for useful calculation can be

traced to a number of algorithmic advances made during 1970’s and 1980’s.  In particular, the

use of interface tracking provides Eulerian calculations with Lagrangian-like resolution of



material interfaces.  However, these methods are quite ad hoc and need to be put on firmer

theoretical and algorithmic footing.

The purpose of this project is to investigate, implement, and evaluate algorithms that have high

potential for significantly improving the fidelity and effectiveness of three dimensional (3-D)

Eulerian hydrodynamic simulations.  Existing 3-D Eulerian codes are actively used for 3-D

simulations in areas such as nuclear safety,  theater missile defense, and conventional munitions.

In addition Eulerian computations are needed to compute the pouring/solidification in the

molding process for metal parts.  In particular the dynamics and physics at the air-metal interface

is of critical importance.   Additional applications can be found in diverse fields from solid state

physics to astrophysics.   In astrophysics, the detailed calculation of the mechanism of a Type II

supernovae is dependent upon the physics captured by Eulerian hydrodynamics.   Details of the

observed light curve and explosion mechanism can be simulated through detailed Eulerian

hydrodynamic computations.

Useful as they are, the codes are fundamentally limited by their basic algorithms.  Our objectives

in conducting this research are detailed below, but can explained compactly as work on methods

which can significantly impact the robustness, fidelity and accuracy of Eulerian computations or

provide capability that does not currently exist.  The objectives are given as follows:

1.  The improvement of the fidelity of the direct computation of interface dynamics through

better integration algorithms,

2.  A more accurate and flexible computation of interface physics through extension of the

continuum surface force (CSF) model,

3.  Provide improved natural coupling of physical phenomena through the alleviation of operator

splitting used in the algorithmic implementation of integration schemes,

4.  Provide for more intimate physical coupling of phenomena by the development of algorithms

which respect the nature of the coupling.

Importance to LANL’s Science and Technology Base and National R&D Needs

This work will benefit a wide range of current and future programs, although it will not replace

or augment existing programmatic efforts, which are directed at maintaining current capabilities,



making incremental improvements,  and supporting users.   Other funds, such as LDRD/PD are

directed toward development for specific program applications, while this work should lead to

generalizable algorithms and models that lend themselves to a wide range of applications such as

those detailed above.

The  3-D Eulerian hydrocodes at the Laboratory to address many of the Nation's most difficult

and complex technical challenges.  These codes form a significant part of the basis for the

"Theory, Modeling, and High Performance Computing" core competency.   They are used to

model a broad range of physical problems, including studies of nuclear safety, theater missile

defense lethality, and armor/anti-armor technology.   In addition, these codes have application to

problems in astrophysics, biotechnology, and industrial processes.  Improvements to the

algorithms for 3-D Eulerian codes will provide advanced application code technology for the

DOE Accelerated Strategic Computing Initiative (ASCI).

Scientific Approach and Accomplishments

Below, we will detail various aspects of the algorithmic accomplishments made during the

course of this research project.

Interfacial Computational Physics

We first discuss the broad area of focus which we denote as “interfacial computational physics.”

This is to provide an emphasis on the dynamics and physics of the material interface whose

computation is the hallmark of Eulerian hydrodynamics.

Novel volume tracking algorithms have the potential to improve the fidelity and efficiency of 3-

D simulations for low and high speed flow regimes.   One approach is to make a truer

approximation to the transport operator.   An example is unsplit advection.  Methods are

currently based on dimensional splitting.  Figure 2 shows the difference in split versus unsplit

integration of volume fractions.  Unsplit advection methods can reduce error because of better

corner coupling.  In Figure 3 the difference in results and symmetry preservation are

demonstrated for the compression and subsequent expansion of a sphere adiabatically.

Furthermore, we are interested in the solution of incompressible flows possessing densities that

vary both discontinuously and smoothly.   Smooth density variations might be caused by

temperature effects, whereas abrupt variations are present at immiscible fluid interfaces.  If



interfaces are present, we wish to model their gross topological changes.   The design of an

incompressible flow algorithm that maintains solution accuracy and simulation robustness in the

presence of density variations presents challenges, especially if the variations are discontinuous

and topologically complex.

We construct robust, accurate, high-fidelity methods for computing such flows.  We focus on

algorithms for the solution of the pressure equation, and its numerical linear algebra, as well as

interfacial physics such as surface tension.   Also developed are algorithms for multi-dimensional

advection and volume tracking.

Geometric Volume Tracking

New algorithms for the volume tracking of interfaces have been developed [RK97VT].  The

algorithm is based upon a well-defined, second-order geometric solution of a volume evolution

equation.   The method utilizes local discrete material volume and velocity data to track

interfaces of arbitrarily complex topology.   A linearity-preserving, piecewise linear interface

geometry approximation ensures that solutions generated retain second-order spatial accuracy.

Second-order temporal accuracy is achieved by virtue of a multi-dimensional unsplit time

integration scheme.   We detail our geometrically-based solution method, in which material

volume fluxes are computed systematically with a set of simple geometric tasks.   We then

interrogate the method by testing its ability to track interfaces through large (yet controlled)

topology changes, whereby an initially simple interface configuration is subjected to vortical

flows.   Numerical results for these strenuous test problems provide evidence for the algorithm's

improved solution quality and accuracy.

Volume tracking methods have enjoyed widespread use and success since the mid-1970's, yet

they possess solution algorithms that are too often perceived as being heuristic and without

mathematical formalism.  Part of this misperception lies in the difficulty of applying standard

hyperbolic PDE numerical analysis tools, which assume algebraic formulations, to a method that

is largely geometric in nature (hence the more appropriate term volume tracking).   To some

extent the lack of formalism in volume tracking methods, manifested as an obscure underlying

methodology, has impeded progress in evolutionary algorithmic improvements.

Basic features of volume tracking methods.   It is first instructive to review the common features

of most volume tracking methods.  Figure 4 shows a computational lifecycle of a volume

tracking integration step detailed below.  To begin, fluid volumes are initialized in each



computational cell from a specified interface geometry.   This task requires computing fluid

interface volumes in each cell containing the interface (hereafter referred to as mixed  cells).

Exact interface information is then discarded in favor of the discrete volume data.   The volume

data is traditionally retained as volume fractions (denoted as f hereafter), whereby mixed cells

will have a volume fraction f between zero and one, and cells without interfaces (pure cells) will

have a volume fraction f equal to zero or unity.   Since a unique interface configuration does not

exist once the exact interface location is replaced with discrete volume data, detailed interface

information cannot be extracted until an interface is reconstructed.   The principal reconstruction

constraint is local volume conservation, i.e., the reconstructed interface must truncate cells with a

volume equal to the discrete fluid volumes.

Interfaces are "tracked" in volume tracking methods by evolving fluid volumes forward in time

with solutions of an advection equation.  At any time in the solution, exact interface locations are

not known, i.e., a given distribution of volume data does not guarantee a unique interface.

Interface geometry must be inferred, based on local volume data and the assumptions of the

particular algorithm, before interfaces can be reconstructed.   The reconstructed interface is then

used to compute the volume fluxes necessary to integrate the volume evolution equations.

Typical implementations of these algorithms are one-dimensional, with multi-dimensionality

traditionally acquired through operator splitting [Strang68,Yanenko71].

Interfaces are subsequently "tracked" by evolving fluid volumes in time with the solution of a

standard advection equation.   At any time in the solution, an exact interface location is not

known, i.e., a given distribution of volume fraction data does not guarantee a unique interface

topology.   Interface geometry is instead inferred (based on assumptions of the particular

algorithm) and its location is "reconstructed" from local volume fraction data.   Interface

locations are then used to compute the volume fluxes necessary for the advective term in the

volume evolution equation.   Volume fluxes are therefore approximated geometrically rather

than algebraically.  Typical implementations of these algorithms are one-dimensional, with

multi-dimensionality built up through operator splitting.  The assumed interface geometry,

interface reconstruction, and volume flux calculation typically comprise the unique features of a

given volume tracking method.

Our piecewise linear volume tracking algorithm, as implemented, is straightforward, simple, and

extensible.  This is accomplished by drawing upon the extensive literature available in the field

of of computational geometry [O’Rourke].   The algorithm is robust, second-order accurate (in

time and space), and is constructed from a set of simple geometric functions.



Continuum Surface Force Model

Other examples of novel algorithms are surface tension models for simulation of interfacial flow

and subgrid methods for following discrete material property changes, such as phase changes,

fracturing, or explosive reaction fronts.   The fidelity of reaction front simulations may also be

improved with the use algorithms such as "hourglass filters" to damp spurious modes [Rider97a].

Our current models for interfacial surface tension begin with methodology established in the

continuum surface force (CSF) method [BKZ92].   The basic premise of the CSF method to

model physical processes specific to and localized at fluid interfaces (e.g, surface tension) by

applying the process to fluid elements everywhere within interface transition regions.  Figure 5

shows the basic concept in a graphical form.  Surface processes are replaced with volume

processes whose integral effect properly reproduces the desired interface physics.  This approach

falls under the general class of immersed interface methods whose origin dates back to the

pioneering work of Peskin [Peskin77].  The CSF method lifts all topological restrictions without

sacrificing accuracy, robustness, or reliability.  It has been verified extensively in 2-D flows

through its implementation in a classical algorithm for free surface flows, where complex

interface phenomena such as breakup and coalescence have been modeled.

In the CSF model, surface tension is reformulated as a volumetric force.  The surface delta

function was proposed in the original CSF model by the characteristic (color) function uniquely

identifying each fluid in the problem.   If a wide stencil is used then the force resulting will be

nonlocal.  We currently force the surface force to be zero in cells not containing the interface,

which causes the CSF to be zero only within the interface transition region.  A proper discrete

Dirac delta function insures that the CSF is normalized to recover the conventional description of

surface tension.

Despite the success of the CSF model and related immersed interface methods, outstanding

issues.  If these issues can be resolved adequately, a wider range of surface tension-driven flows

will be modeled reliably.   For example, improved forms for the Dirac delta function, displaying

better convergence and smoothness properties, are needed.   Our current numerical results are

very sensitive to the discrete form used, indicating that the quality of CSF model relies heavily

on the quality of the form used.  Recent results motivate the use of other kernels, such as the

Peskin or higher-order kernel [RKPA].



Perhaps the most stringent test for a surface tension model is a test of the ability to maintain an

equilibrium (minimal energy) configuration.   A 2-D or 3-D static drop is such an example.

Here a perfectly spherical drop is placed in a lighter-density background fluid, and all forces are

ignored except the drop interfacial surface tension.  The drop should remain stationary, as the net

surface tension force is zero.   An incompressible flow solution for this system, however,

generates false flow dynamics (dubbed "parasitic currents") that can grow with time (sometimes

unbounded).   The source of these currents originates in part with the surface tension model, as

the computed pressure gradient at the drop interface does not exactly cancel the surface tension

force.

High Resolution Flow Solvers

The development of flow solvers which are well-matched to the characteristic of the interfacial

computational physics requires several goals as defined below.  These principles guide our

development aimed at providing practical, but powerful Eulerian algorithms [PABMR].

Accuracy is defined as the quality of deviating slightly from fact.   For our purposes, this

definition is refined as the measured error for a given solution.   There is also a distinction

between order of accuracy and numerical accuracy.   For reasonable grid resolution, methods

with a higher order of accuracy can be accompanied by significantly larger numerical error than

the lower order method.  This naturally leads to our next definition.

Fidelity is defined as exact correspondence with fact.   A solution that possesses fidelity is one

that is physically meaningful.  A method is considered to be high-fidelity when it produces

solutions that are accurate relative to the computational resources (the mesh size) applied to

them.  For example, interface tracking mechanisms can increase solution fidelity by maintaining

interface discontinuities as the interface is advected and/or undergoing topological change.

Robustness is the property of being powerfully built or sturdy.  A robust method will not fail in

a catastrophic manner, but rather "degrade gracefully."  Robustness implies that the algorithm

can be used with confidence on a difficult problem.   The degree to which the degradation is

graceful is subject to interpretation.   A robust method should produce physically reasonable

results beyond the point where accuracy is expected or achieved.

We choose a basic method which does not employ operator splitting and has at least second-

order accuracy.  While this provides an adequate basis for development it is not sufficient for our



purposes.  The maintenance of a compact material interface provides for a continual singular

problem.  This gives a continual source of oscillatory behavior in the solution requiring great

care and extra measures too assure high fidelity and reasonable efficiency.

The first of these measures is the control of error accumulation.  By carefully formulating our

discrete problem, the errors can be made to be local in time and accumulate at a far lower level

than standard implementations.  Without this care, solutions can be polluted by the signature of

past errors integrated over all previous time steps.  These problems can be fatal to where the

variation in fluid properties are orders of magnitude.

Our second measure to provide the robustness needed for a variety of applications is discrete

filtering.  This algorithm cleans up errors which are associated with spurious features not

recognized by our discrete operators.  Without this, the spurious features can interact with the

desirable part of the solution polluting it.  Together with error control, filtering can provide

exceedingly high resolution solutions for extreme circumstance while not having to make

compromises in the calculation of the material interfaces.  We should note that for the most part

the lack of compact material interfaces and the physics associated with them alleviates the

necessity of the measures discussed here.

Another issue is the construction of truly multidimensional advection algorithms which are

ideally suited for general 3-D grids.  Over the last twenty years, methods for higher order

monotone advection have become accepted and are ubiquitous in the CFD literature

[Leveque90].  When able to reliably suppress non-physical oscillations, monotone methods have

supplanted first-order upwinding schemes.   The design and understanding of these methods for

data that varies in one dimension, is well developed.  Most often multi-dimensional applications

of monotone schemes are derived from an operator-split application of the basic one-dimensional

method.

Our starting point are multi-dimensional "k-exact" methods devised by Barth [Barth95].   We

specifically embrace Barth's approach for deriving a reconstruction based upon least-squares

methodology.   Barth applies monotonicity after the minimization process, following standard

principles.  The problem, however, is that the definition and application of monotonicity is not

part of minimization process, and therefore remains tied to the one-dimensional process.  We

show that if monotonicity considerations are recast as constraints in the minimization processes,

the resulting reconstruction is truly multi-dimensional, i.e., the difference between a constrained

(monotonic) and unconstrained (nonmonotonic) reconstruction can be interpreted as a geometric



"limiter" that is in general a vector [RK97MM].

Rather than impose scalar monotonic constraints subsequent to the reconstruction, our

monotonicity imposition will assume the form of an inequality constraint and can be interpreted

as

a vector "correction" to the unconstrained reconstruction.   We show that basic one-dimensional

slope limiter ideas can be recast as constraints, in a multi-dimensional reconstruction.  We also

discuss a powerful weighted least squares approach that incorporates expected numerical error

into the interpolation process.   Two-dimensional numerical results are given to substantiate the

benefits of the basic methodology underlying our approach.

Another aspect of the many one-dimensional methods is the ability to design the level of

numerical dissipation into the methods through the choice of the limiter.  This freedom enables

the method to possess discrete properties best suited for the physical/mathematical structure of

the waves being transported.  We developed an approach to applying data dependent weights to a

least squares/minimization formalism which recovers much of the functionality of the family of

classical limiters.  Our method allows a fairly wide degree of flexibility in tailoring the

dissipation inherent in the multidimensional interpolation process.

Multilevel Iterative Methods

Next, we consider the efficiency of our computations in an asymptotic sense.  Solutions to the

linear systems arising from the pressure equation can also be obtained with a multigrid (MG)

[Briggs87].   Use of a MG algorithm is desirable because of its attractive scaling.   The operation

count for classical direct linear algebra solution techniques (e.g., Cholesy) scale like N3.   This

scaling improves to N2 for banded solvers that take advantage of the structure of the linear

system.   MG scales linearly with N.   Thus, MG (where it works) will eventually provide the

fastest route to a solution as the grid is refined.  We find that our MG algorithm converges

quickly to a solution in most cases, but fails on occasion with flows having interfaces possessing

large density variations and complex topology (e.g., a drop splashing into a pool).

Our current solution to the MG robustness problem is to employ the symmetric MG algorithm to

precondition a standard conjugate gradient (CG) method.  Experimentation has proven the utility

of combining these two methods.  This combined MGCG method usually scales like a MG

(rather than the less efficient CG-scaling).  We have found it to be quite robust.  It is an

important step in designing a robust method that consistently exhibits MG-like scaling.  Figure 6



shows the relative improvement that can be achieved for difficult elliptic problems through this

approach.  Given our success with this approach we have examined these concepts for nonlinear

problems.

Nonlinear problems are ubiquitous in physics and their efficient solution is of great practical

interest.  In particular nonlinear initial value problems present a unique set of challenges

especially with respect to the efficiency of the solution.  It is our intention to investigate Newton-

Krylov methods which have shown great promise in solving a wide class of nonlinear problems.

Newton’s method is a traditional approach for solving nonlinear problems efficiently while

Krylov (subspace) methods extend CG-type algorithms to nonsymmetric and indefinite linear

systems.

It is well known that the efficiency of the Newton-Krylov methods is critically dependent on the

effectiveness of the preconditioner.  Traditional preconditioning (typically ILU(n)) shows less

than optimal scalability practically limiting time step size and mesh size (approximately N3/2).

Storage becomes an increasing issue with ILU(n) as the degree of fill-in increases (n increases).

Our intention is to investigate the potential of multigrid preconditioning to alleviating this

shortcoming.  Furthermore, the basis of a simple nonlinear iteration such as a Picard iteration

(based on a multigrid solver) can serve to precondition Newton's method implemented with a

matrix-free Newton-Krylov algorithm [RK97MG].

It has been shown that GMRES has advantageous properties for Newton-Krylov.  The Krylov

vectors are well behaved and the convergence is monotone.  When GMRES is used as the

Krylov method, the issues regarding the scaling of work and storage are especially critical.  This

is due to the required storage of the Krylov vectors and the increase in work per iteration

associated with the orthogonalization process in the Arnoldi algorithm.  The multigrid algorithm

in addition to its scalability can also more effective per iteration than other typical

preconditioners and should reduce the raw number of linear iterations significantly (reducing

storage needs greatly for large problems) [KR97a,KR97b].  We are interested in combining

multigrid with Newton-Krylov in order to give better performance.

We have demonstrated this basic approach on several problems of general interest.  These

include Burgers’ equation, Navier-Stokes equations and a Marshak (radiation/nonlinear

diffusion) wave.  In each case the combined multigrid-Newton-Krylov method has shown

excellent scaling, extreme robustness and algorithmic simplicity.



Applications of the Research

Much of the research done in the course of this project has been applicable to Telluride, a

simulation code for casting and solidification.  Below, we show a demonstration of the

capabilities enhance in Telluride through this research effort.

A pure copper casting, produced at the LANL (Sigma) foundry starting in 1985, has been chosen

for a Telluride validation simulation.  This casting, referred to as a "chalice", is a test part for the

foundry, for which ample experimental data of the mold filling and solidification process is

available.  The representation of the chalice in Telluride is shown in Figure 7.  The chalice

casting consists of a thick hemispherical shell which is "gated" at its pole with a cylindrical "hot

top".  The hot top serves to continuously supply liquid metal to the hemispherical shell during

filling/solidification (to avoid shrinkage defects).

A cylindrical graphite crucible containing 400 grams of the molten copper, superheated by 200

C, is positioned above the cylindrical hot top.  The entire crucible/mold/part system is enclosed

in a coil furnace containing an inert gas (5 psi argon). The chalice mold (uncoated H-490

graphite) is initially heated to roughly the melting temperature of copper (1083 C).  The molten

copper is then allowed to fall under gravity into the mold cavity through a 3/8-inch (diameter)

pour hole in the hot top.  Power to the furnace coils was shut off 10 minutes to allow the metal to

cool down and solidify. Although the data is not available, we estimate the molten copper to

have entered the hot top at a velocity of approximately 15.7 inches/sec, filling the entire mold

cavity in about 1.6 seconds. Time to complete solidification is approximately 10 minutes, as the

molten copper begins cooling immediately after entering the mold. In fact, without the mold

being heated, it was found experimentally to "cold shut", i.e., portions of the copper solidified

before the entire mold cavity was filled adequately.

Current Telluride simulations are performed in two separate steps: (1) isothermal filling of the

mold cavity (neglecting heat transfer), and (2) cooling/solidifying of the quiescent liquid copper

subsequent to fill. These two separate simulations will soon be combined into one integrated

simulation, in which fluid flow, heat transfer, and solidification will be modeled simultaneously.

For the current simulations, only one quadrant of the full geometry is simulated. The geometric

model and computational mesh are generated with a commercial software package called I-

DEAS. The current (fairly coarse) mesh consists of 6480 unstructured hexahedral elements.

For the mold-filling simulation, the mold cavity is initially filled with a background fluid



representing the argon gas.  At time zero a stream of liquid copper at the centerline having the

diameter of the pour hole is introduced from the top via an in-flow boundary condition.  The in-

flow velocity is about 15.7 inches/sec. Out-flow boundary conditions are applied on the top

boundary near the outer edge to allow venting of the background fluid as the mold is filled, since

all fluids are assumed incompressible.  Surface tension is neglected because both the Weber and

Bond numbers (measures of the relative importance of inertial and gravity forces compared to

surface tension) are much greater than unity.  The flow is also assumed to be inviscid, as the

Reynolds number of the falling liquid metal stream is higher than 8,000.  The liquid

copper/argon interface is tracked with the Telluride volume tracking algorithm based largely on

the research conducted in this project, which assumes the interface to be locally piecewise

planar. The incompressible flow algorithm is a nominally second-order-accurate cell-centered

scheme that borrows heavily from Godunov algorithms developed for high speed flows and

contains numerous refinements developed during this research project.

For the heat transfer/solidification simulation, the mold cavity is assumed to be initially full of

quiescent liquid copper (perfectly filled) at 1270 C.  Because only one 90 degree quadrant is

simulated, elements along the two vertical symmetry planes are assumed insulated. The top

horizontal plane of the hot top is also assumed insulated because of its proximity (1 inch) to the

(hot) crucible. For the inner hemispherical surface (adjacent to the graphite mold) a convective

heat transfer boundary condition is used with a heat transfer coefficient (h) of 25 W/(m2-K). For

the outer surfaces, a coefficient h equal to 15 W/(m2-K) is used, which corresponds to to

experimental heat transfer coefficient values in stationary air.  The surface physics associated

with the soldification process are modeled using an extension of the CSF model.

Coupling Radiation and Hydrodynamics

One goal of this effort is to develop a system of equations that can accurately predict, at a

reasonable computational cost, non-relativistic, strongly-radiative inviscid flows.   We began

with an asymptotic analysis of the coupled radiation-hydrodynamics system of equations.

Previously, only the asymptotics of the radiation transport has been studied.   By looking at the

coupled system, we can identify the magnitude of the material opacity required for the

equilibrium, isothermal, and streaming regimes.

The coupled system uses a source-term treatment that is based on the development of Mihalas

and Klein [MK82].   The system has the following properties:

1.  The equations are correct to O(v/c), where v is a characteristic velocity and c is the speed of



light.   The O(v/c)-corrections are sufficient to ensure that the equations have the correct

asymptotic behavior.

2.  The equations identified with the transport of mass, momentum, and total energy are written

in conservation form.   The conservation property is necessary so that numerical methods based

on these equations can predict correct shock speeds given sufficient entropy production in the

numerical method.

3.  A multigroup treatment of radiation can be easily employed.

Note that ensuring that the equations are correct to O(v/c)- is sufficient, but not necessary, to

obtain the correct asymptotic behavior.   With this in mind, we studied several simplified source-

term treatments.   These treatments are no longer correct to O(v/c)-, but have all of the other

desirable properties outlined above and are much simpler to implement.

A dispersion analysis of the coupled equations, with a P1-treatment of radiation, was shown to

be consistent with our asymptotic results.  The dispersion analysis also showed that the coupling

must be a function of only two parameters; namely, the momentum and total energy depositions.

Less obvious is that numerical discretizations should retain this property to avoid spurious

modes.   Moreover, in the certain popular forms of the governing equations, the two-parameter

formulation leads to O(v2/c2)-terms.  Even though the equations are correct to only O(v/c), these

terms must be retained; otherwise, in the equilibrium regime, our analysis shows that the wave

structure of the coupled system is incorrect.

In addition, we developed numerical methods that closely couple the evolution of

hydrodynamics with radiation.   Current numerical methods "split" the evolution of the radiation

and hydrodynamic fields.   For example, in the first stage of a time-step, the radiation field is

updated with the hydrodynamic variables held constant.   Then, the hydrodynamic variables are

updated using the new radiation field.   Although the split approach is modular and easy to

implement, there are disadvantages:

1.  High-resolution methods for predicting shock evolution require a reasonable estimation of the

local wave structure.   Radiation can have a large effect on the hydrodynamic wave structure, but

current split methods ignore this effect.   Unless a problem-dependent, unnecessarily large

amount of artificial dissipation is added, the split methods will have overshoots at shocks (Gibb's

phenomenon) and may allow non-physical, entropy-violating shocks ("expansion shocks").

2.  Current split methods are at best first-order accurate.

3.  To ensure conservation and hence, to be able to compute the correct shock speed, the

coupling terms must be evaluated identically between each split system.



4.  In state-space, a split approach may only be able to approximate a certain fixed point (for

example, an equilibrium point) as a limit-cycle process.

We have begun to address all but the last issue.   For equations that govern the equilibrium

regime, two types of coupled-flux solvers were developed and implemented into a conservative

code.   Numerical results show that both of the solvers eliminate overshoots, approximate

expansions correctly, compute the correct shock speed, and were easily incorporated into a

second-order framework.   Future research will focus on extending these ideas to non-

equilibrium radiation hydrodynamics.

Adaptive Riemann Solvers

At the heart of many modern methods for solving the equations of hydrodynamics is the

Riemann solver.  The Riemann solution is the initial value problem resulting from two constant

discontinuous states.  Its exact or approximate solution is a means of introducing physically

motivated regularizing terms (i.e. artificial viscosity) into the numerical solution of

hydrodynamic equations at discontinuities.  The solution of the Riemann problem while well

developed as a method, has several flaws with respect to interesting applications.  These are that

many Riemann solvers can admit nonphysical entropy violating solutions, and the ability of the

basic framework to be extended to nonanalytic equations of state for general material.

Additionally, methods specifically focused on strongly shocked flows are lacking.  Here, we

address these concerns with a new approach outline below.

The basic structure of the solution to the Riemann problem is essential to understanding the

construction of this solver.  A discontinuity between two piecewise constant states evolves into a

self-similar solution.  The three conservation relations then create three waves, two nonlinear

waves, either shocks or rarefactions and a linear, contact wave.  Figure 8 shows a representation

of the Riemann problem in space/time and pressure-velocity form.  This form is used in

constructing this approximate Riemann solver.  Other possible configurations of the Riemann

problem are given in Figures ? and ?.  The pressure and velocity are constant across the contact

discontinuity making them convenient for the parametrization of the Riemann solution.

In the years following World War II there was considerable effort in establishing the the

properties of materials under extreme conditions.  Similar efforts were undertaken in both the

United States and the Soviet Union..  Among the many important results to arise from this effort
was the Us-Up parametrization of the shock Hugoniot.  The Us-Up description of the shock



Hugoniot has a remarkable capacity to reduce shock data from shock wave experiments.

The Us-Up equation is , Us = A + B Up where Us  is the shock speed, Up is the particle velocity

or the jump in velocity across the shock, with A and B being fitting coefficients.  Intuition and

experimental evidence shows that A  is the sound speed of the unshocked material.  The

definitions can be refined via thermodynamic arguments .  Using this form the pressure is given

by a quadratic relation in particle velocity  by inserting it into the Rankine-Hugoniot equation for
momentum, pS = p0 + ρ0 Us Up.  This quadratic relation can be analytically evaluated forming

the basis of our Riemann solution.

When solving the equations of gas dynamics the flow is defined by the conservation equations

and the equation of state (EOS).  The EOS in its simplest form for isentropic flow

has the form of the dependence of the pressure, p,  on the specific volume, V, p(V).  An
assumption in this case is that pV<0, so that the resulting system is hyperbolic.  Of nearly equal

importance is the assumption of the convexity of the EOS expressed as pVV > 0.  With the

convexity of the EOS it is assured that shocks are compressive and rarefactions are expansive.

Thus, the fluid structures in the resulting solution(s) are constructed in an entropy satisfying

manner.

While the assumption about the convexity is critical in the construction of solutions (analytic or

numerical), it is rarely employed to improve the quality of an approximate solution.  Here we

describe a process where the degree of convexity of the EOS is used to improve the accuracy of

the approximation to the solution of the equations of gas dynamics [Rider97b].  Viewed in

another fashion, this solver is designed to carry with it a two parameter version of the local

equation of state.
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List of Figures

1. A comparison of Eulerian and Lagrangian frames of reference.  On the left is the initial

configuration which remains unchanged in the Eulerian frame, but will move to reflect material

motion in the Lagrangian frame.  On the far right are two potential Lagrangian cell

configurations, “boomerang” and “bowtie” cells which can lead to computational difficulties.

2. A comparison of “split” versus “unsplit” spatial integration for volume tracking.  On the left

the split integration is shown in a sequence of two passes first in the upward then in the left to

right directions.  The unsplit integration on the right has both directions integrated

simultaneously.  Note that the inferred geometric operations are more involved in the unsplit

method.

3.  Some sample results computed using split and unsplit volume integrators in a cylindrical

geometry.  The circles shown are spheres which have been compressed to a radius of about 20%

of their initial radius and returned to there initial configuration.  On the left the split results are

shown while the unsplit results are shown on the right.  The unsplit results demonstrate superior

symmetry as the velocity field is purely radial in this case. With the unsplit method, the sphere is

in virtually the same position on the two axes, while there is a greater than 10% difference with

the split integration technique.

4.  A diagram showing the “lifecycle” of a volume tracking method.  Initially the method takes

volumes of material on a computational grid and reconstructs an interface of assumed shape

(typically linear).  Using this reconstructed interface, the volumes are transported by the material

velocity to new locations.  At this point the process can begin again with the advanced time

distribution of volumes.

5.  A diagram explaining the basic premise of the CSF method.  A force is to be applied to the

surface of a region and must be computed.  In order to do this, the force is converted from a

surface force to a volume force which is well-suited toward control volume based physics

integrators.  This involves the selection of functions that transfer the surface force to a

volumetric force in a manner which minimizes errors.

6.  The graphs show the amount of work required to invert a linear system based on the solution

of a radiation diffusion (Marshak) wave with discontinuous coefficients spanning 10 orders of

magnitude.  The graph on the left shows standard multigrid and the right shows using multigrid



to precondition a Krylov subspace solver.  Simply using the same method to precondition rather

than solve the linear system results in a factor of seven savings in computational cost.

7.  An picture of the computational grid used for the chalice pouring and solidification simulation

computed using Telluride.

8.  A pictorial representation of the Riemann problem.  The left picture shows the Feynmann

diagram of the wave structure for a classical shock tube problem.  A diaphragm breaks and a

wave pattern emerges with a shock wave followed by a material discontinuity followed by a

release wave.  The right picture shows this system parametrically in pressure-velocity space

which is employed to compute an adaptive approximate Riemann solution.
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